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ABSTRACT

Stirling's formula is one of the most frequently used results from

asymptotics. It is used in probability and statistics, algorithm analysis and

physics. In this thesis we shall give a new probabilistic derivation of Stirling's

formula. Our motivation comes from sampling randomly with replacement

from a group of n distinct alteritadivez. Usually a repetition will occur before

we obtain all n distinct alternatives consecutively. We shall show that

Stirling's formula can be derived and interpreted as follows : as n-->o- the

expected total number of distinct alternatives we must sample before all n are

obtained consecutively is asymptotically equal to the expected number of

attempts we make to obtain all n distinct alternatives consecutively times the

expected number of distinct alternatives obtained per attempt.
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L INTRODUCTION

A. THE PROBLEM

Asymptotic analysis is important in many areas of modem science, such

as the theory of probabiiity, complex analysis and applied mathematics.

Because the factorial function and its asymptotic behavior are often

needed in mathematics and engineering, Stirling's formula

n! - n n e'-n N2cn, (n ---- >o)(1

is one of the most important and frequently used asymptotic formulas. The

notation in (1) means that the ratio of the left side and the right side tends to

one as n tends to infinity.

There are several ways to prove Stirling's formula. For example, one can

take the logarithm of n! and use Wallis's formula to obtain the factor of

(X )112. For this type of proof, see [Ref. _l.

Alternatively, one can start with the integral representation

n! = ftnetdt
"0

and use Laplace's method for integrals to evaluate it asymptotically.

See [ Ref. 2]1 for this type of approach.



All these methods use many techniques from mathematical analysis and

some of them are quite sophisticated. We will pursue a new way to prove

Stirling's formula using a discrete or combinatorial approach.

This method of proof was mentioned as a research problem in [Ref. 3_1,

and the purpose of this thesis is to present a solution to this problem.

B. MOTIVATION

From (1), Stirling's formula can also be written as

n____ en'-
"n -2 - - en) -1 , (n--->oo).
n

Imagine a box filled with n distinct balls. We shall select balls at random

with replacement. The motivation for our approach comes from noting that

n!/nn is the probability of selecting n distinct balls consecutively while

(2rn)1/ 2/2 is the asymptotic expected number of distinct balls obtained

before a repetition as n->-. These expressions appear in Stirling's formula

as written above thus indicating that a combinatorial proof might be possible.

The purpose of the next section is to define the combinatorial set up in more

detail.
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IL COMBINATORIAL SET UP

A. DEFINITION OF THE GAME

Imagine a box filled with identical balls numbered from one to n. We

draw a ball from the box at random, write down its number, and replace it,

mixing the balls well so that our next draw is also made at random. If we

continue this process we will eventually get a repetition for there are only n

distinct balls and we must certainly repeat a number by our (n+l)st draw.

We are interested in the task of drawing out all n balls consecutively in

this manner. We mean by this that after n consecutive draws, recording the

numbers as we draw, we wish to obtain a permutation of the sequence (1,2,3,

... ,n). If we obtain a repetition before the desired result, then we start over

from the beginning.

The following three questions are of interest:

* What is the average or expected number En of distinct balls obtained
before a repetition occurs?

* What is the average or expected total number Tn of distinct balls
(adding up the number of distinct balls obtained in the first game, the
second game ... etc.) selected before obtaining n consecutive distinct
balls (i.e., some permutation of (1,2,3, ... n) ).

* What are the asymptotics of En and Tn as n->- ?

B. THE AVERAGE OR EXPECTED NUMBER OF DISTINCT BALLS BEFORE

A REPETITION

Let pj be the probability that we get exactly j distinct balls before a

repetition. In other words, since only j distinct balls are obtained, pj is the

probability of getting a repetition on the (j+l) st draw, and not before.

3



Since we assume each draw is independent, the probability of drawing a

specific ball at any time is just 1/n. We always obtain at least one distinct ball

in any play of the game. To obtain exactly one distinct ball in a game we must

get a repetition on our second draw. The probability of doing this is 1/n and

therefore the probability of obtaining only one distinct ball is

1
n

The probability pi also can be written as

n-0 1
PI = - ,

n n.

To draw two distinct balls before a repetition we must get distinct balls

on both the first and second draws. The third draw must then be a repetition

of either the first or second draw. Thus we are looking for a three-tuple

where th,. firi 16., element are distin. aILd the third clement is a repetition

of either the first or second element. Since all elements come from

(1,2,3, ... , n), there are a total of n3 three-tuples, with only 2.n- (n-I) meeting

the above requirement. Therefore,

n-0 n-1 2
P2 

=
n n n

In the same way,

n-0 n-I n-2 3
P3 = n n n n

and clearly

4



= n-O n-i n-2 n-3 n-j+l n = 1,2,3,....n).
n n n n n (n

Let us check that the sum of all probabilitics is one, i.e.,

=p= 1.
j=l

Since
n-O n-I n-2 n-3 n-j+l jPJ = n n n n .. n n

j (n) (n-1) ... (n-j+l)
nj+1

I

setting j = n gives

n-O n-i n-2 n-3 n-n+l n
Pn -

n n n n n n

n!
n
n (2)

For j =n-1,

n-O n-i n-2 n-3 n-(n-1)+l n-i
n n n n n n

n-1 n-2 n-3 2 n-i
n n n n n

(n -i) (n-i)! n
n-I nn

5



(n -1) (n)!
nIn

and for j=n-2,

Pn-2 n-i1 n-2 n-3 .. n-(n-2)+l ni-2

n- I n-2 n-3 3 n-2
n n n .. n n

(n - 2) (n-i)!
n-22

n (n -2) n!
2 n

In general, for 0 :5 j n-I,

Prk-j n-_I n-2 n-3 .. n-(n-j)+l n-j

nnj n n n n

.(n-j) (n-i) (n-2) ... 0+1)

n nn j

nj-1 ( ) n
- ! nnnj n

6



We shall now sum each pj from pn to Pi in reverse order beginning

with

nn

n n!
nn

Continuing,

nfn! n(n-2) n!Pn+ Pn.1 +Pn-2 n + 2 n

2n+ n 2 -2n n!
2 n

n

2

n

and

22

Pn+Pn-1+Pn-2+Pn3 n= n n 23) nfl

2 3 2

T3n +n -3n n
n 6
n ( 2__ +__ -3 2 n

n

3n n

= 6 )
n

n

We claim that

7



n! n'
Pn+Pn-l+"'-+Pn-J= n j (05j5n-1).n

We can prove t'is by induction. Assume

n! nk
Pn+ Pn-l+"" + Pn-k - T

n

for some k < n-1. This is the induction hypothesis. It holds for k = 1, 2, and 3.

Then

Pn + Pn-1 +-" + Pn-k +Pn-(k+l)

n! nk  n(k+1)-1 (n-k-I) n!
Snk! (k+l)! n

k
n! n (n-k-i)
nn k! [1+ (k+l)

n! n k n
n nk! -- )

k+1

n! k+1

nn (k +1)!

This proves

n! ni
±Pn-k = Pn+Pn-l+...+Pn- = n! , 0 < j n-1.

k=0 n J(3)

8



Equation (3) now implies
n n-I

I Pk I XPn-j
k=1 j=O

n-I

~n (n-i)

What is the expected number En of distinct balls obtained before a

repetition? This expression is

n
En XkPk = pl+ 2 P2+ 3 P3+--- +fl~

k= 1

= PI+P2+P3+---+P

+P2+P3+... +P

+ P 3 +... +P

+ pn

= l+(1-Pl).s(l-PI-P2)+..+(l-Pl-P2-..-Pn-1).

From (3),

I-PI-P2-...-Pj = Pj+1 4 Pj+2+***4 Pn

9



- Pn-k

k=O

n! nn - (j+1)

n- n

n-I n-2 ..n -j 1:_<j:5n-l)
n n n

Thus

E 1 n-i n-i n-2 n-I n-2 1
n n n n n n (4)

C A RELATED GAME

Now we consider a related game to simplify our later analysis. The rules

for this new game are as follows: initially, we start with n distinct balls. Now,

however, when we select a distinct ball and replace it, we also add a new ball

numbered differently from all previous balls. For example, suppose we have

just selected the kth distinct ball. Before our next draw, we replace the kth

ball and add a new ball numbered n+k, so that our next draw will be from a

pool of n+k equally likely distinct balls. Thus, each time we draw out a

distinct ball, the number of balls in the box increases by one.

This game, like the previous one, ends when we get a repetition.

However, unlike the first game, now it is possible in principle to obtain

arbitrarily many distinct balls.

10



If the game ends, we empty the box and start over with the original n

balls.

Now, what is the expected number of distinct balls En* obtained when

playing this second game?

Let pj* be the probability that we draw out j distinct balls, i.e., repetition

occurs on the (j+l)st draw, and not before.

Thus pl ° is the probability that a repetition occurs on the second draw.

Since we always get a distinct ball on the first draw, after the first draw, the

box has n+1 balls. Therefore,

n 1 1
P = " l -"n n+l n+l

In the same way, p2* is the probability that a repetition happens on the

third draw, and not before. Therefore the first and second draws yield

distinct balls so that after the first draw there are n+1 balls in the box, and

after the second draw there are n+2 balls in the box. The probability of getting

a distinct ball on the second draw is n/(n+l), and in order to get a repetition

on the third draw, we have only two choices out of n+2 balls in the box.

Therefore

n n 2
P2"-nP2=n n+l n+2

In the same way we find

n .n n 3
P n n+l n+2 n+3

11



. nf n n n j

n n+l n+2 n+3 n+j-1 n+j

Again we need to show that the sum of all probabilities is one. We argue

as follows.
P. n I

n n+l

n
= 1 --

n+1

PI* +P2 _±_ (+ (nn
n+1 n n+l n+2

n n 2
n+l n+l n+2

n 2

n+I n+2

P*P2+ 3=n n +n n 3
Pi P2 + 1 n+l n+2 n+i-2 n+3

n n 3
= 1 -( n In 1 312

12



n n n
1-n+l n+2 n+3

We claim
k k
l' nj = 1- (n+l) (n+2) (n+k)

This is true for k=l.

Assume for the induction hypothesis that

m m
j'V- nj = 1- (n+1) (n+2)... (n+m)

Then

m m

__ n_ _ n n n n m+1
2.Pj*+Pr+l = 1- +l)(n+2) (n+m) + (j=1~ ... (+) ni- n n+l n+2 "'" n+m n-smnil

m mml
n Mn Mm+1

-(n+l) (n+2) ... (n+m) (n+l) (n+2) ... (n+-m) n + m +1

mml
n Mi+1= 1- ((n+l) (n+2)... (n+m) (1n+m+

m+1
- n

(n+l) (n+2) ... (n+m) (n+m+l)

This concludes the induction proof.

Note that the expression

13



k k

Pf 1 (n+1) (n+2)... (n+k)
j=1

can also be written as

k nk
"P =  (n+1) (n+2) ... (n+k)

Now let us consider
um n k

k-:.. (n+1) (n+2)... (n+k)

lim 1
+-.o 1 2 k

Since
k

1 +- w- as k-, oon

it follows that

lira n k0

k-,- (n+1) (n+2) ... (n+k)

Letting k->oo in (5), it then follows that

ypj, k-,Y

j=l j=1

EmrD n k

= -, [ 1 (n+l) (n+2) ... (n+k)

14



Hr n k

-k- (n+1) (n+2)... (n+k)

-1

Now we shall find the expected number En* of distinct balls for this

second game. The expected value En* is

En"= Xkpk= Pl" + 2P2" +3P30 +-..
k=1

= Pl+P2" +P3" +P4+..-

+ P2 + P3"+P4"+..

+ P3+ P4 "+ - .

+ p4"+..

=I+(-PI*)+[I -(PI " + P2")] +...+[l - (PI*+ p2+.+ Pj'] +...

=1+ n n n n n nn+l +ljn+-2 +-" +  n+2"n . .... (6)

Note that to derive (6) we have used (5).

15



D. ASYMPTOTICS FOR THE TWO GAMES

We shall now study the expected values of the two games. No dosed

form expressions appear to exist for En and En* as given in (4) and (6).

However our proof of Stirling's formula, as mentioned in the introduction,

requires the asymptotic behavior of En as n-->o. In this section we shall

study the asymptotic behavior of En and En*.

Recall that

n n-1 -1 n -2 n-1 n-2 IEn = kPk =I + n +n n n n
k= n

and

' k nl n n n n nEn"=1 n P'1+I + n+I nE+2 + ni+l n +2 ni+3 +" ..

Let
n-0 n-i n-2 n-k

n n n n (7)

i- n n n n
n+0n+ n+2" n+k (8)

Then (4) becomes
n n-I

En = Ykpk = Ya k
k=1 k=0 (9)

16



while (6) becomes

En*"= Xkpk" = X k

k=1 k=O (10)

We are going to show that

n-1k -

k=O k=O

or

E n , En", (n---o).(I

We shall do this in several steps which will be given in sections 1 through 4.

1. An Inequality for En and a Partial Sum of En*

The goal of this section is to obtain (15), an important inequality

relating En to a partial sum of En*.

To accomplish this, there is an inequality we shall need. It is

l-x < e-x <5 x>O.
I +x (12)

We prove the inequality (12) as follows:

If x > 0, then -x < 0. By exponentiating both sides we get

e-x < 1, or 1-e-x>0.

If x < 0, then -x> 0. By exponentiating both sides we get

e-x > 1, or 1- e-x < 0. Define I(x) by

17



I(x) = f l(1 -et) dt

From the above inequalities, we conclude that

l(x) > 0, ifx*0.

However,
X

I(x) = t+et1
0

= x+e 1 - 1.

Consequently

eX >l-x, x0. (13)

Note that equality occurs in (13) only if x = 0. When x > 0, this

expression yields the first inequality in (12).

For the second inequality in (12), we note that (13) implies ex > 1 + x,

(x 0), or e-x < 1/(1+x), (x;.0). Returning to the problem, from (7) and (12) it

follows that for 0:< k < n-1

0 1 2 k
k  n n n n

-0 -I -2 -k

5 e a n e ... e a

18



1 1 1 1

0 1 2" kK1+- 1+- 1+-"' 1+-
n n n n

n n n n
n n+2 n+3 n+k

-"Ok.

Therefore, -k (k. 3)

azk <5 2. P. < , (0<kgn-1). (14)

Summing the inequality in (14) we conclude that

n-1 n-I -k**.) n-I

2:ak < IXe 2- <Y, %
k=O k=O k=O (15)

Note that (9), (10) and (15) imply

En" > En. (16)

19



2. The Divergence of En and En*

We shall need the following inequality, special cases of which will be

useful later. This result is given as an exercise on page 60 of [Ref. 4I.

If .i > - 1 for i = 1, 2, ..., m where m > 1 and 91, 4.2, ..., gm are all

positive or negative, then

m m
II(l+gi) > I+Y'PIi

i il (17)

We shall prove this by induction. For m = 2 the inequality holds since

l+9t1 ) 1+9t2) = 1+91+92+91l42

> 1+91+9 2.

Assume the inequality is true for m = k, i.e.,

k k

I'(l+gi) > l+i
i=1 i=1

This is the induction hypothesis. Multiplying both sides by 1 + 9k > 0,

we have

20



k+l k+1 k

i=1 i=l il

k+l
> +

i=l1

The above inequality holds because all ti are either positive or negative.

This completes the proof.

Since

o 1 2 k
a k  I ( - ) 1 n 1-n)... 1-nk), (0<5k:n-1).

n n n n

Clearly

0<a k <1, (05k:n-1),

with a k = I only when k = 0.

We claim that

1 k 1 k
n n n n

This follows from (17) with ±a = -i/n and m =n-1. In this case -1 < ±i < O

for i = 1, 2, ..., n-1. Using the definition of ca, and admitting the case k = 0,

we conclude

21



-(0 + + ) :5 a k<:1, (O0:5k:5n-1).n n n (18)

Since

0 1 l+...+k = k(k+l)
n n n 2n

(18) may be written as

k k(k+l1) < a k< 1 ,(0:5k:5n-1)
2n -k

It follows that if k2 = o(n) as n->, ( i.e., k2 /n->O as n->oo), then

ak-> as n --->.

So, for example, when k < n1 /4

ak->1 as n--->.

This implies En ->-, as n->-, and since

En* > En

by (16), it follows that En --- >w as n--->- too.

22



Thus, in both games the expected number of distinct balls obtained

before a repetition occurs tends to infinity as the initial number of balls in the

box tends to infinity.

3. The Leading Asymptotic Contributions to E and En*

In this section we shall show that

k. k.

En - Ek, E(n --->),
k=O k--O

when

kn= n , (O<e<-).

This result determines the leading asymptotic contribution to En and En*.

In order to show this, we shall need Bernoulli's inequality:

(l+x)m > l+mx, ifm> l,x>-l and x*O. (19)

Bernoulli's inequality is a special case of the inequality in (17).

Choose gi = x for i = 1, 2, ..., m when x * 0 and x > -1. Then (17) implies

(19).

Using (19) for any positive integer k with 2 k < n, (1 -

k/n) < (1 - 1/n)k, and (1 - k/n) = (1 - 1/n)k, for k = 1 ork = 0.

Now we define

23



kn = [n 2 (0<F<4). (0

11

k~~n,(O 6<) (20)

The number kn is the largest integer less then or equal to 2  i.e.,

1 1- 1 - 1
(n 2 - )< kn _<112

If k > kn, and k is an integer then

n2 <kn+ <k

so that
k2  2 2 2

k > n , -k 2E
n n (21)

Recall that

n-i
En k+ 5

k=O k=n

If k > n,

n n n n n n
k i n+l n+2 n+n 2n+l 2n+k-n

so that
1 k-n

Consequently,

24



~Pk~ X23-k
k--n k=n

j=o

n-I
Since En' diverges, it follows tha En' 10XI, (n--->o)

k=0O

Now, for k :5 n,

Ok n n n n
ii +n +-2 ..n+k

n+O n+1 +-2) n+k

0-0 1(__L I 2 k

0- 0 0 1 2 k

by (19). Since the right side of the above inequality can be written as

25



and 0+1 +2+... +k = k(k+1)/2, itfollowsthat

Ok 1- 21 n2

This inequality implies

k2

-12

:5.(eyn), (by( 12))

-k

Since (21) implies

-k2  n 2 c

4n 4

for kn < k < n, it follows that

24
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Now recall from (14), that when k < n-1

ak -< Pk.

Combining the last two inequalities then yields

26
-n

atk <5 Ok < e-4-, (kn < k < n).

It then follows that

n-1 n-1 -n

k=k+l k=k+l

.
|

Since n e 4T--->o as n--->-o, it follows that

n-1
Y, ----->0

k=k+ I (23)

n-1

k=k*+ 1 (24)

as n->oo.

Recall that

Eno P k

k=O

27



Y~k+ I k+XI~k
k=O k=k.+ I k=n

Since En ->- as n->oo and the second and third sums in the above

expression are finite by (22) and (24). It follows that

k.
E.*~ -YP,, (n --- >-).

k =0 (25)

Similarly,

k. n-1

En= Xak+Xak"
k=O k'+1

Since En also diverges as n->-, and the second sum above is finite

by (23), as n->- we conclude

Efl-Xak, (n--->o)"
k-O (26)
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4. The Proof that En is Asymptotic to En"

From the above analysis, we conclude that

k. k.

k=O k=O

We shah now show that

k. k.Ick- Ya P,., (n --- >),
k=O k=O

or from (9) and (10) that
En - E n* as n--->oo

thus proving (11).

For 0<k5kn,

1 2 k

n n n

n+1 (n+2-) ... (n+-k

n-1 n-2 n-k-- ) (- )..( -)
n n n
n )n n

n+-12 n2 -n 2 k k

= ( )( )...( )
2 2 2n n n

29



2 2 2

n n n
2 k

2k

(1 - ( )

> 1- - (by Bernoulli's inequality )

n

k n •

2
n

From this analysis and (14), it follows that

k(1--T) < a:k< k, (Ok~kn).

n

Summing the above inequality gives

kn 3  k. k. k.
21-T 1 Ok <I ak<:51: k

n k=O k=O k=O (27)

By the definition in (20),

kn= nI + (O<e< )

so
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3k - -l ' n i n . 1 Ikn3 ~ ~ n2n '

2 2 2
n n n

Since 0 < e < 1/6, it follows that

kn3

S3:>O as n--->o-
2

n

Letting n->o- in (27), we can conclude that

k. k.

I ak - I k, (n--- >-)
k=O k=O (28)

From (25) and (26), it then follows that

En - En*', (n---
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IIL STIRLING'S FORMULA

A. THE COMMON ASYMPTOTIC VALUE OF E n AND En*

In Chapter II we proved that

En - En' , (n --- >-)

In this chapter we will determine the common asymptotic value of En

and En*.

From (14) we have

-k (k 2)

ak < e o <k, (0Ok5n-1)

Hence,
k. k. k 1O*) k.

I ak:5X2 e 2 XI5 P
k=O k=O k=O (29)

Letting n->-* in (29), and using (28) we conclude

k. k. k2  - k

Iak - e i-" e! , (n--->oo),
k=O k=O

(30)
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k. klt. k 2  - k

'X Ok X: e'T- ea2 - , (n--->oo).
k=O k=O

Consider the following inequality:

-k k. -k
2  k. - k 2  

-k k - k
2

e IXe2"a I JX e I Xe 2

k=O k=O k=O (31)

Since kn/ n = o(1) as n->o, we conclude from (31) that

k. - k' ., ke .,2

Xe " e - eI, (n___>oo).
k=O k=O

From (25), (26) and (30) it then follows that

k, .,2
E n - Y, e " , (n--->*)

k=O (32)

and
ka .k

2

En'" J~" , (n --- >o).

k=O (33)

To asymptotically estimate the sum in (32) and (33), note the function

2
-x

f(x) = e
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is positive and monotone decreasing on [0, o). Setting

1
h -

1

2n,

we then have
k2

f(kh)= e e

and

f(x) dx :5 Xhf(kh) :f f(x)dx

k=l (34)

Since

kn >n
2 - 1,

and kn h -- n it follows that

1 . "
knh > -(n -1)

or
1 • 1

knh > (n-n )

Hence, kn h->-oo and h->0, as n->--.

Letting n->a in (34), we conclude

li 2W =k_'~-  fo e"' dx= -

n 1 k=1 *k Y

or
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k. -0

k=1 (35)

Equation (32), (33) and (35) then impliy

En ~ , E n " - 2 , (n --- >-)2 2) (36)

B. THE ASYMPTOTICS OF THE EXPECTED TOTAL NUMBER OF

DISTINCT BALLS

In the first game considered above we defined Tn to be the expected total

number of distinct balls obtained before winning. Let p be the probability of

winning the game, and q = 1 - p be the probability of losing. Recall that one

wins the game if n distinct balls are obtained consecutively and loses

otherwise.

Let the random variable X be the number of times we play the game

before winning. Then

k-i
P(X=k) = lq , (k = 1,2,3...).

The probability p of winning the game, i.e., of getting exactly n distinct

balls before a repetition, is p = Pn = n!/nn, by (2).

The expected value of X is

ikP(X=k) = Ykpqk '1

k=1 k=1
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1

P

nnnt.

This means that, on average, we must play nn/n! times in order to win.

Therefore, the expected total number of distinct balls Tn obtained before a win

can be represented as follows:

Tn = n+ 1)En

This is the value of Tn because the expected number of plays is 1/p

(-nn/n!). Among these plays, one must be a win, and furthermore that win

must occur on the very last play. All the other plays are losses. When we win,

we draw out n distinct balls, and when we lose, the expected number of

distinct balls is En. Therefore,

Tn = n +(-1)En  (7

This expression can be rearranged as

ETn = n1- En+- E

P.
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From (36),
E. 2 f E" 2 ,(n--->oe)

En 2 2

So n - En = O(n), (n->). It follows that

E
Tn = O(n) + (P. (38)

Now consider En/p. Since

En  En, (n--->o),

we can write

En 1E n En"
p 2 - -), (n---> ) (39)

But

En En" 1
En + - = !(En+En"
p p p

n n n-I
-- . (Xk+ XIk)

k=O k=O

n.. +n-1 n-1 n-2 n-1 n-2 1 n n n
n n[ n +. n n +  ++l+- i-...)
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n-i n-2 n-3 n n+1 n+2
n n n )+ n n n+ .. l)(-+-

(n-()l (-2)1 (n-3)1 +!(n+l)! (n+2)!

and the last expression, after rearranging, can be written as

2 n-2 n-1 n n+1 n+2+._ + n - )+n + + +..
2! (n-2)! (n-i)! '(n+l)! (n+2)!

n
- .

It follows from (39) that
En e n (p 2'(n--->oo). (0

P 2 (40)

With this information, letting n-->,- in (38) yields

ne
T n  T- - , (n--->(4).2 (41)

C STIRLINGS' FORMULA

From (38), (40) and (41)

En
Tn - 2, (n--->oc)P (42)

i.e.,
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nn
n! .n (43)

Since

En 2n ,(n--->oo)

(43) implies
n 

-n X
Tn ! 2 ,(n

Using (41), we get

e n xn
2 n! 2 ,(n--->oo), (44)

or alternatively,

n

n! ~ 2- 2 , (n--->oo).
n

This can also be written as

ni -n 2

n! ~ n e 2Xn (n--->oo),

and this is Stirling's formula (1).
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IV. CONCLUSION

We have given a new combinatorial or probabilistic derivation of

Stirling's formula. Our derivation also gives another way to interpret

Stirling's formula. To see this, let us consider a specific value for n. Suppose

n = 20, i.e., there are 20 distinct balls in the box. The expected number of

distinct balls E20 obtained is

19 19 18 19 18 17 19!
=20 20 20 20 2019

= 5.293584585.

This is fairly dose to the asymptotic value of En as n->-, i.e.,

(20)
= 5.604991216.2

The probability of winning a game when n =20 is

20!
P = P20 = 2020

so that the expected number of plays before a win is

1 20 201 20 - 43099804
p 20!
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By (37), the expected total number of distinct balls T20 obtained before a

win is

T20 = 20 + (43099804 -1 ) (E20 )

= 228152473. (45)

The asymptotic formula (41) for Tn gives, for n = 20,

20
Tn - e

- 242582598,

and this is of the same order as (45). As n gets larger, the agreement between

the exact formula for Tn and the asymptotic formula will get increasingly

better. Notice that when n = 20 the expected number of plays before a win is

quite large.

To conclude, we can interpret Stirling's formula as written in (44) in the

following way using (42). As n-->- the expected total number of distinct

balls obtained before a win is asymptotic to the expected number of plays

necessary to win times the expected number of distinct balls per play.
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